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Abstract This paper aims at providing a vari-
ance/covariance profile of a set of 36 monitoring
stations measuring ozone (O3) and nitrogen diox-
ide (NO2) hourly concentrations, collected over the
period 2005–2013, in Portugal mainland. The result-
ing individual profiles are embedded in a wavelet
decomposition-based clustering algorithm in order to
identify groups of stations exhibiting similar profiles.
The results of the cluster analysis identify three groups

Capsule abstract: Wavelet NO2 and O3 profiles obtained
for Portuguese monitoring stations point out the need to
further review their classification according to environ-
ment/influence type.
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of stations, namely urban, suburban/urban/rural, and
a third group containing all but one rural stations.
The results clearly indicate a geographical pattern
among urban stations, distinguishing those located in
Lisbon area from those located in Oporto/North. Fur-
thermore, for urban stations, intra-diurnal and daily
time scales exhibit the highest variance. This is due
to the more relevant chemical activity occurring in
high NO2 emissions areas which are responsible for
high variability on daily profiles. These chemical pro-
cesses also explain the reason for NO2 and O3 being
highly negatively cross-correlated in suburban and
urban sites as compared with rural stations. Finally,
the clustering analysis also identifies sites which need
revision concerning classification according to envi-
ronment/influence type.

Keywords Air quality monitoring stations · Ozone ·
Nitrous oxide · Wavelets · Classification · Clustering

Introduction

Air quality monitoring in specific locations is the main
tool for governmental management and evaluation of
local air quality status. The classification of moni-
toring stations follows technical regulation (type of
environment and of influence) and highlights the simi-
larities among sites with respect to site characteristics,
pollutant concentration levels, and/or temporal pro-
files. This procedure also allows to disclosure regional
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patterns by the aggregation of stations with similar
profiles. However, stations should not be assumed to
be classified correctly once updates and changes in
environment conditions are likely to occur. Addition-
ally, the classification of stations can become very
problematic since legislation requires the measure-
ment of multiple air pollutants (Council Decision
97/101/EC on Exchange of Information) which com-
plicates the interpretation, and especially, the global
integration of all information that defines air quality
(e.g., Monjardino et al. 2009).

Methodologies for station categorization and
for classification accuracy assessment are typically
based on the statistical analyses of concentra-
tions records following by a clustering procedure
aiming at grouping stations with similar profiles
(e.g., Joly and Peuch 2012; Kracht et al. 2013, 2014;
Sharma and Kulshrestha 2014). Within this frame-
work, the variability of the concentrations records has
received much attention (e.g., Levy et al. 2014; Li
et al. 2013; O’Leary and Lemke 2014).

In studies of regional pollutant concentrations vari-
ability, air quality records can be analyzed individu-
ally (e.g., Figueiredo et al. 2013; Reich et al. 2013;
Carvalho et al. 2010; Adame et al. 2010; Rojas
and Venegas 2013) or simultaneously (e.g., Finazzi
et al. 2013; Im et al. 2013; Shaddick and Wakefield
2002; Clapp and Jenkin 2001). An alternative mul-
tivariate approach is to consider, simultaneously, the
whole data set of pollutant concentrations measure-
ments for each station and characterize regional vari-
ability by means of techniques such as empirical
orthogonal functions (e.g., Alkuwari et al. 2013; Fiore
et al. 2003), Canonical Correlation Analysis (e.g., De
Iaco 2011; Statheropoulos et al. 1998), and cross-
correlation analysis (e.g., Monteiro et al. 2012a). To
this extent, cluster analysis provides a powerful tool
for characterizing regional variability in terms of loca-
tions exhibiting similar patterns. However, although
clustering techniques have been widely popular for
the analysis of non-time series environmental data, its
extension to time series data is hindered by the serial
dependence and high-dimensionality of the observa-
tions. Despite this fact, clustering of time series is
a rapidly developing subject and it has been a topic
of active research over recent years, mainly due to
its wide applicability to the analysis of environmen-
tal processes. In particular, cluster analysis of time
series pollutant concentrations has also received much

attention in the literature. A comprehensive revision
of ozone-based clustering approaches can be found in
Ignaccolo et al. (2008) and references therein. More
recently, D’Urso et al. (2014) applied the wavelet-
based clustering approach proposed by D’Urso and
Maharaj (2012) in the analysis of pollutant con-
centrations (CO, NO, and NO2) in Rome, Italy.
Monteiro et al. 2012b applied a clustering procedure
based on quantile regression to explore the changes
in hourly O3 data collected over the Iberian Penin-
sula from 2000 up to 2009. Alonso et al. (2006)
introduced a forecast-density-based time series classi-
fication method and analyzed historical data of CO2

emissions in industrialized countries. Extensions of
the clustering procedure proposed by Alonso et al.
(2006) have been proposed by Vilar et al. (2010). The
authors considered non-parametric approximations to
the true autoregressive functions without making any
assumptions on parametric models for the true autore-
gressive structure of time series; see also Liu et al.
(2014) for further extensions. Also, Shi et al. (2014)
employ the k-means clustering algorithm to classify
the daily variation cycles of SO2 and NO2 recorded at
the north of Xiamen (China) considering the temper-
ature, relative humidity, wind speed, and direction as
covariates.

It is well-known that air quality time series exhibit
several periodicities with different contributions to
the total variance of the series (Sebald et al. 2000;
Tchepel et al. 2010). For example, spectral analysis
points out that the daily period (24 h) has the largest
importance in the hourly O3 time series (Hogrefe
et al. 2000). Additional frequency bands of interest
are intra-day (periods less than 12 h expressing local-
level processes, high frequency), synoptic (periods of
2–21 days associated with changing weather patterns,
intermediate frequency), and longer-term (i.e., base-
line that contains longer periods including the yearly
periodicity reflecting changes over the entire year, low
frequency). Thus, the relative contribution of these
periodicities to the total variance/covariance of a set
of multivariate time series can be used to build a pro-
file to characterize the monitoring location in terms of
variance/covariance decomposition.

The goal of this work is to build a vari-
ance/covariance profile for Portuguese monitoring sta-
tions across time scales with direct connection with
the main periodicities observed in NO2 and O3 time
series (2005–2013). The individual profiles are then
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used to identify groups of similar stations and also to
investigate the classification (environment and influ-
ence) of monitoring sites. The stations profile is based
on a discrete wavelet variance/covariance analysis
since NO2 and O3 time series are known to be of
non-stationary nature with important changes in time
of major periodicities. This ruled out the possibility
of considering standard power spectrum techniques
such as the well-known fast Fourier transform (FFT)
in the analysis of such time series. Wavelet variance
provides the scale-by-scale variance of the univariate
time series (NO2 and O3) while the wavelet covariance
provides the scale-by-scale joint covariance (or associ-
ation) between each pair of wavelet scales. Therefore,
distance measures based on such features will pro-
vide detailed variance/covariance information about
the time series at different frequency intervals. Note
that such information cannot be obtained from a time
domain analysis.

The remainder of this paper is laid out as follows: the
analyzed time series records of NO2 and O3 are summa-
rized in “Air quality data and monitoring stations”.
“Statistical methods” briefly introduces basic con-
cepts related to the wavelets-based methods. Further-
more, the time series clustering procedure is also
described. The results as groups of the monitoring
stations extracted on the basis of their corresponding
variance/covariance profiles are presented and dis-
cussed in “Results and discussion”. Finally, the last
section is devoted to conclusions.

Air quality data and monitoring stations

A total of 36 monitoring stations measuring NO2

and O3 pollutants within Portugal mainland (see
Fig. 1) were selected taking into account the efficiency
data collection (> 85 %) during the 8-years period

Fig. 1 Spatial location and classification (environment and influence) of the air quality monitoring stations
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2005–2013. The data are reported on an hourly
basis and is available at the Portuguese Air Quality
Database (http://qualar.apambiente.pt/). The quality
control of the data is based on common methods
and criteria for diagnosing and assessing the ambient
air quality in Member States (Directive 2008/50/EC).
Before 2005 year, the group of monitoring sta-
tions was considerably smaller being that the rea-
son for not considering the previous periods in this
study.

The spatial coverage is suitable over Portugal area
with at least one station located in each administrative
region. Nevertheless, more than 50 % of the moni-
toring sites are located in the metropolitan areas of
Lisbon (36 %) and Oporto (22 %). Because of that,
the majority of stations (20 out of 36) are classi-
fied as urban environment (see Table 1) with only
eight suburban and eight rural. This group of 36 sta-
tions also includes the three types of influence: 26
background, five with traffic, and five with industrial
influence.

The air quality data used in this work consists of
36 pairs of NO2 and O3 time series hourly collected
during the 8-years period 2005–2013. As previously
referred, the stations were chosen according to the
efficiency data collection (> 85 %), and the missing
data were replaced by the value from the nearest-
neighbor station evaluated from Euclidean distance
(Speed 2003).

Figure 2 displays the hourly NO2 and O3 levels
for two illustrative background stations: SMIN (rural)
and ARC (urban). Note that both NO2 average and
variability levels at SMIN station are lower when com-
pared to those collected at ARC station. In general,
the high NO2 values and variability at urban stations
are explained by the multiple and different emission
sources of NOx existent in urban areas, namely road
transport and residential combustion. Regarding the
O3, mean level is slightly higher whereas the variabil-
ity of O3 values is lower at SMIN station, which is
expected since O3 is a secondary pollutant formed in
the atmosphere along the transport from polluted areas
and reaching higher values in remote areas. A closer
look to Fig. 2 also indicates that these series exhibit
an annual periodicity with the annual minimum NO2

values being reached simultaneously with the an-
nual maximum O3 values. The annual periodicity of
the NO2 and O3 series and the association between
them are more notorious at ARC station, and thus, it

is expected that the variance/covariance contribution
of the annual frequency will be higher in urban
stations.

The baseline O3 fluctuations (and indirectly for the
NO2 precursor) are mainly caused by the seasonal
variation of the solar flux (Austin et al. 2007) as well
as by other sources with direct impact in the slow trend
of the series, such as alterations in deposition due to
land use changes (e.g., Emberson et al. 2013). Also,
there are other time scales associated with important
physical processes. Namely, the O3 photochemical
production cycle is responsible for the typical diur-
nal profile (intra-day, < 12 h). Furthermore, the daily
cycle (24 h) in ground-level O3 is associated with the
day/night variation of the solar flux and the resulting
differences between daytime photochemical produc-
tion and nighttime removal of ozone (Hogrefe et al.
2000). Finally, the synoptic patterns having a preva-
lence time of about 4–7 days contain fluctuations
related to changing weather patterns (Sebald et al.
2000). Moreover, negative cross-correlation between
O3 and its precursor NO2 is expected due to the
chemical atmospheric processes involved (Seinfeld
and Pandis 2006).

Statistical methods

This section provides an outline of discrete wavelet
analysis (and Maximal Overlap Discrete Wavelet
Transform, or MODWT in short) useful in the present
setting, referring the reader to the book of Percival
and Walden (2006) and the references therein for a
more detailed description. Furthermore, this section
also describes the Wavelet decomposition-based Clus-
tering (WdC hereafter) approach used in this study
to classify bivariate time series of NO2 and O3. The
purpose of this analysis is twofold: first, wavelet
decomposition is applied to NO2 and to O3 time series
in order to identify the most relevant scales in what
concerns to variability and also joint variability for
each station. Second, based on such features, the WdC
method is applied for grouping stations with similar
profiles.

Wavelet-based decomposition and feature extraction

The MODWT is a linear filtering operation which is
the base of an additive decomposition of a given time

http://qualar.apambiente.pt/
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Table 1 Identification of the Portuguese air quality monitoring stations: coordinates (LAT and LONG) and classification (type of
environment and influence)

Station name Abbrev. Environment Influence LAT LONG

Alfragide ALF Urban Background −9.21 38.74

Antas ANT Urban Traffic −8.59 41.16

Arcos ARC Urban Background −8.89 38.53

Beato BEA Urban Background −9.11 38.73

Chamusca CHA Rural Background −8.47 39.35

Custoias CUS Suburban Background −8.65 41.21

Entrecampos ENT Urban Traffic −9.15 38.75

Ermesinde ERM Urban Background −8.55 41.22

Ervedeira ERV Rural Background −8.89 39.92

Escavadeira ESC Urban Industrial −9.07 38.66

Fornelo do Monte FRN Rural Background −8.10 40.64

Fundao FUN Rural Background −7.30 40.23

Horto HRT Suburban Background −8.45 41.57

Int Geofisico Coimbra IGEO Urban Background −8.41 40.22

Ilhavo ILH Suburban Background −8.67 40.59

Laranjeiro LAR Urban Background −9.16 38.66

Centro Laticinios LAT Urban Background −8.38 41.27

Leca LEC Suburban Background −8.63 41.22

Loures LOU Urban Background −9.17 38.83

Monte Chaos MCH Suburban Industrial −8.89 37.95

Mem−Martins MEM Urban Background −9.35 38.78

Odivelas ODI Urban Traffic −9.18 38.80

Olivais OLI Urban Background −9.11 38.77

Lamas Olo OLO Rural Background −7.79 41.37

Perafita PER Suburban Industrial −8.71 41.23

Paio Pires PP Suburban Background −9.08 38.63

Quinta Marques QMARQ Urban Background −9.32 38.70

Reboleira REB Urban Background −9.23 38.75

Restelo RES Urban Background −9.21 38.71

Alto Seixalinho SEIX Urban Traffic −9.06 38.65

Senhora Minho SMIN Rural Background −8.70 41.80

Sonega SON Rural Industrial −8.72 37.87

Teixugueira/Estarreja TEI Urban Industrial −8.58 40.75

Terena TER Rural Background −7.40 38.62

Vermoim VER Urban Traffic −8.63 41.23

Vila Nova Telha VNT Suburban Background −8.65 41.25

Stations are presented in alphabetical order of their abbreviations

series Xt, for t = 1, . . . , T and consists of reexpress-
ing Xt as the sum of J + 1 sub-series corresponding
to each time-scale, that is

Xt =
J∑

j=1

Dj + SJ,

where Dj, for j = 1, . . . , J , represents the time series
with wavelet coefficients (details) corresponding to
the pass-band filtering scales τj = 2j−1 and SJ is a
time series with scaling coefficients (smooth) which
corresponds to the remaining parcel of the decom-
position. The wavelet coefficients Dj at scale τj =
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Fig. 2 Hourly concentration values (μg m−3) of NO2 and O3 for the background stations a rural SMIN and b urban ARC

2j−1 are associated with frequencies in the interval[
1/2j+1, 1/2j

]
and thus scale τj captures the dynam-

ics over intervals with duration from 2j to 2j+1 time
units. Consequently, SJ includes information from all
scales above 2J time units.

Let {δj,l : l = 0, 1, . . . , Lj } be the MODWT
wavelet filter of length Lj associated with the scale
τj, where Lj = (2j −1)(L−1)+1 and L is the width
of the base filter (i.e., for j = 1). Further assume
that

WX
j,t =

Lj −1∑

l=0

δj,lXt−l ,

represents the stochastic process by filtering the dis-
crete time stochastic process Xt with the MODWT fil-
ter δj,l . Then, the time independent MODWT wavelet
variance at scale τj is defined as

ν2
X(τj ) := V

(
WX

j,t

)
,

provided that it exists and is finite. Thus,

V (Xt ) =
∞∑

j=1

ν2
X(τj ),

which implies that the wavelet analysis decomposes
the variance of (Xt) across wavelet scales. A simi-
lar decomposition can be obtained for the covariance
between two stochastic processes Xt and Yt with
MODWT coefficients WX

j,t and WY
j,t , respectively,

defined as

Cov(Xt , Yt) =
∞∑

j=1

νXY (τj),

where νXY(τj) is the covariance between WX
j,t and

WY
j,t wavelet scales. In a bivariate framework, the

scale-by-scale wavelet variance/covariance quantifi-
cation can be rearranged in the following symmetric
matrix

C(τj ) :=
(

ν2
X(τj) νXY (τj)

νYX(τj) ν2
Y(τj)

)
.
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After setting the base filter, WX
j,t can be straightfor-

ward estimated by considering circular boundary con-
ditions due to the periodic characteristics of NO2 and
O3 time series. Hence, C(τj) can be estimated through
the unbiased empirical counterpart of its components,
namely

ν̂2
X(τj) := 1

Mj

T −1∑

t=Lj−1

(
ŴX

j,t

)2
(1)

and

ν̂XY (τj ) ≡ ν̂YX(τj ) := 1

Mj

T −1∑

t=Lj −1

ŴX
j,t Ŵ

Y
j,t , (2)

where Mj = T − Lj + 1 represents the number of
wavelet coefficients excluding the boundary coeffi-
cients that are affected by the circular assumption of
the wavelet filter.

The wavelet filter is selected to obtain an ade-
quate variance decomposition and variance estimation
across scales. In particular, the least asymmetric fil-
ter of width L = 8, i.e., LA(8), was adopted in this
analysis since it yields coefficients that are approx-
imately uncorrelated between scales while having a
filter width short enough to minimize the number of
boundary coefficients. Furthermore, LA filters exhibit
approximately linear phase and thus allowed to align
the sinusoidal components in all scales with the orig-
inal time series by time shift, for visualization pur-
poses. Finally, the number of scales J is restricted to
the length of the time series (T ) and the filter width
(L) as follows

J < log2

(
T

L − 1
+ 1

)
,

which resulted in J ≤ 13 for this study. It is important
to remark that MODWT analysis up to J = 13 scales
includes the frequencies of maximum interest in NO2

and O3 time series, i.e., up to annual periodicity.
In this work, the NO2 and O3 series were anal-

ysed after normalization towards zero mean and unit
variance, i.e., (Xt −m)/s, where m represents the con-
stant mean and s the standard deviation of the original
time series (Xt). Since the MODWT allows partition-
ing the total variance of the original series by scale,
the variance of the normalized series associated with
each scale corresponds to the percentage of Xt vari-
ance associated with such scale. The normalized series
are also used to compute the wavelet covariance as

measure of the association between NO2 and O3 series
across scales.

Clustering of bivariate time series

The clustering procedure builds a hierarchy from the
individual elements by progressively merging more
similar clusters, using an appropriate dissimilarity
measure and a group linkage criterion (see, e.g.,
Everitt et al. 2011). The dissimilarity matrix, dw, has
entries dw(i, i′) corresponding to the pairwise com-
parison between objects i and i′. In this work, each
object i corresponds to a set of bivariate time series,
say [Xi,t Yi,t ]. The comparison between each pair of
bivariate series i and i′ is based on their corresponding
wavelet variance/covariance matrices, using the fol-
lowing distance measure proposed by D’Urso et al.
(2014),

dw(i, i′) =
{(

0.5 dwv(i, i
′)
)2 + (

0.5 dwc(i, i
′)
)2

} 1
2
,

which weights evenly the components dwv(i, i
′) and

dwc(i, i
′), connected, respectively, to the wavelet vari-

ance and covariance of the time series. Note that
dwv(i, i

′) takes into account the differences in vari-
ance across scales for the objects i and i′ as

dwv(i, i
′) =

J∑

j=1

‖diag(Ci(τj )) − diag(Ci′(τj))‖,

where diag(A) denotes the principal diagonal of a
matrix A and ‖ · ‖ represents the Euclidean norm. On
the other hand, the component

dwc(i, i
′) =

J∑

j=1

‖νXi,t Yi,t
(τj ) − νXi′,t Yi′,t (τj )‖,

quantifies the differences in wavelet covariances
across scales. Distances dwv(i, i

′) and dwc(i, i
′) are

estimated by replacing its components by their empir-
ical counterparts from Eqs. 1 and 2.

Finally, the clustering procedure involves obtain-
ing a dendrogram based on the application of classical
cluster techniques to the dw matrix. In particular,
unweighted average distance (average linkage), short-
est distance (single), and furthest distance (complete)
were considered for the group linkage criterion. The
group linkage is chosen as to maximize the dendro-
gram’s goodness-of-fit, evaluated through the cophe-
netic correlation coefficient between distances matrix
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dw and distances represented in the cophenetic matrix
(Everitt et al. 2011, p. 91). The closer the coefficient
is to one, the more accurately the clustering procedure
reflects the original data.

Results and discussion

In this section, we first present the results of the
wavelet-based method for the rural SMIN and the
urban ARC monitoring stations. Afterwards, the
results are summarized for the remaining stations by
their scale-by-scale variance/covariance profiles. The
result of the profile-based clustering procedure are
represented in a dendrogram.

As previously mentioned, the times series of NO2

and O3 series are of non-stationary nature which sup-
ports the demand to use MODWT for the variance
decomposition per frequency scale. These time series
exhibit an annual periodicity with negative NO2 and
O3 association, being this pattern more visible for the
urban station ARC which is related to a more rele-
vant chemical interaction processes between the two
pollutants in urban/polluted areas. This annual period-
icity can be properly isolated at higher scales in the
MODWT analysis, as illustrated in Fig. 3 for the O3

time series of the ARC station and taking j = 13
(i.e., a time scale from 213 to 214 hours which includes
the yearly period). Note that, as j decreases, the time
scale becomes shorter and therefore the wavelet scales
include the higher frequencies of the original signal.
Thus, the variance associated to each scale represents
the parcel of the original variance within a certain fre-
quency interval. In addition to τ13, also wavelet scales
τ3 and τ4 exhibit high O3 variances. Such scales corre-
spond to time periods between 8 to 16 h (intra-diurnal)
and 16 to 32 h (daily), respectively. The same scales
have also a relevant contribution for the NO2 vari-
ance (see Fig. 3b). Note that the negative association
between NO2 and O3 values is particularly obvious
for the wavelet scale including the annual periodic-
ity (j = 13 in Fig. 3a, b). The importance of the
daily time scales of the ARC urban station is justified
by the more relevant chemical transformations occur-
ring in areas with high NO2 emissions (urban areas),
which are responsible for high variability on daily
profiles: the intra-diurnal (τ3) related with the traffic
profile and the higher night/day magnitude differences
(τ4) due to the photochemical processes involved. On

the other hand, rural stations are mainly influenced
by transport processes and not directly affected by
primary pollutant emissions, which justify the less
variability found.

Spectral analysis is commonly used to describe a
time series in the frequency domain and to quantify
the contribution of each frequency to the variance of
the series. In particular, the highest spectrum ampli-
tudes localize the most important cyclic components
in each series and the area of each component corre-
sponds to the contribution of the variance associated
with that frequency band to the total variance of the
original time series. In this sense, wavelet scales may
be interpreted as the equivalent to the spectral density
function (the variance as a function of the frequency
content of the series) but regarding frequency intervals
instead of single frequencies.

To help the comparison between SMIN and ARC
profiles, Fig. 4a–d shows the spectrum of the NO2

and O3 time series as well as the spectrum of the
wavelet scales exhibiting high variance (i.e., Wj,t for
j = 3, 4, 6, 13). Note that the components identi-
fied in NO2 are placed in similar frequency locations
for both stations, clearly indicating the presence of
the same periodicities in both stations. Regarding the
weight of each frequency component, the contribution
of τ6 is similar in both stations. Furthermore, τ3 and
τ13 contributions are higher for ARC station than for
SMIN station. Similar remarks can be depicted from
the spectral analysis in O3 regarding τ3 and τ13 con-
tributions. Urban ARC site exhibits a much larger τ4

contribution in comparison with rural SMIN station.
Figure 4e–f displays the NO2 and O3 cross-

spectrum for SMIN and for ARC stations (respec-
tively), illustrating the decomposition of NO2 and
O3 covariance as a function of frequency. Note that
covariance is larger for the urban ARC station when
considering all wavelet components which is justified
by the above mentioned chemical processes transfor-
mation (interconversion) involving both species.

The clustering of the stations considered the cor-
responding variance/covariance profiles. The results
show that the group linkage criterion with the high-
est cophenetic correlation coefficient is the average
linkage, i.e., the clustering approach merging sta-
tions and clusters of stations whose average distance
with respect to all pairs is minimized. The coeffi-
cient value equals 0.86 indicating that the clustering
is quite fit to the original data. Figure 5 represents
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Fig. 3 Wavelet scales of
the hourly O3 (top) and
NO2 (bottom) values for the
urban background station
ARC
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Fig. 4 Spectrum and cross-spectrum of hourly NO2 and O3
values for the background stations a, c, e rural SMIN and b,
d, f urban ARC. Spectrum and cross-spectrum of the original

time series (grey) and of Wj,t scales for j = 3, 4, 6, 13 (black)
estimated via Blackman-Tukey algorithm

the dendrogram showing how stations are linked: the
lower the linkage level (distance), the higher their
similarity. The dendrogram clearly distinguishes three
groups of similar monitoring stations with respect to
variance/covariance profile (i.e., lowest distance).

Class A (blue) typically contains urban stations
with the exception of PP (background). Class B
(green) includes suburban (PER, VNT, CUS, LEC,
HRT, and ILH), urban (VER, ANT, IGEO, TEI, and
LAT), and also some rural stations. Finally, class C
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Fig. 5 Dendrogram
showing the hierarchical
clustering of the monitoring
stations (average linkage
criterion)
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(red) includes rural stations (except suburban MCH).
It is worthwhile to mention that the stations in class
C are highly heterogeneous (reflecting existing dif-
ferences in variance/covariance patterns among rural
stations and higher geographical distance) when com-
pared with those in classes A and B. A more detailed
analysis shows that a geographical pattern exist,
namely in urban stations: the stations located in Lis-
bon area belong to class A whereas all urban stations
located in Porto/North region (more influenced by
traffic and industrial activity) fall into class B.

Aiming for a more comprehensive interpretation of
the three groups identified in the dendrogram, Fig. 6
shows the NO2 and the O3 variance/covariance contri-
bution per wavelet scale and per station, where darker
colors indicate higher contribution.

As observed in Fig. 6a, monitoring stations in class
A and class B exhibit the highest contribution for
the NO2 total variance in τ3 and τ4 scales whereas
for monitoring stations in class C the total variance
is more spread over all scales. With respect to O3

variance in Fig. 6b, the scale τ4 is of major impor-
tance in class A and in class B stations, being higher
for stations in the latter class. This result is related
to the higher amplitude and variability of the diurnal
cycle of both pollutants, which is directly influenced
by NO2 emissions and O3 chemistry (production and
consumption). Finally, Fig. 6c shows that NO2 and O3

are negatively associated in the three classes and for
all scales. Note that the time series of NO2 and O3

are more associated in scales τ3, τ4, τ13 for stations in
class A, and τ3, τ4 in class B. The stations in class C
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Fig. 6 Mosaic plot representing the contribution to the total
variance/covariance of the time series per wavelet scale for all
stations (darker colors indicate higher absolute values). Dashed

lines delimitate the three clusters represented in Fig. 5 with
stations following the same order

are those with lowest association between NO2 and O3

across scales. Chemical processes involving these two
species are more relevant in polluted environments
(urban and suburban areas) which explain the higher
absolute association and correlation between them.
Since this chemistry involves the reaction of NO2 and
the production of O3, the negative cross correlation is
justified.

The subgroup of TER, FUN, ILH, and ERV sta-
tions in class B exhibits a similar profile to that of
the remaining stations within this class, although also
sharing some characteristics with the rural stations in
class C. In particular, for NO2 variance (Fig. 6a) and
for O3 and NO2 covariance (Fig. 6c), the contribution
of τ4 resembles to that of the remaining stations in
class B whereas the contribution of τ3 is more similar
to that of stations in class C. This suggests that these
particular stations are located near rural environments
but with more high amplitude and variability of the
(concentration) daily profiles.

In summary, these results allow to better under-
stand the characteristics associated to each monitoring
station and to identify similarities/differences among

them. In what concern to its classification in terms
of environment and influence, some exceptions were
identified; namely, the PP suburban station which pro-
file resembles more the urban stations; TEI and LAT
urban stations that show a suburban behavior; and
also the rural stations TER, FUN, and ERV with sub-
urban characteristics. Finally, it is also important to
mention that two different classified stations—rural
SON and suburban MCH (both industrial)—although
being geographically close, exhibit different profiles
as observed by the high linkage level at which these
stations merge into one group.

Conclusions

In this paper, we investigate the variance/covariance
profile of 36 monitoring sites, measuring ozone (O3)
and nitrogen dioxide (NO2) hourly concentrations col-
lected in Portugal mainland. The resulting individual
profiles are embedded in a wavelet decomposition-
based clustering algorithm to identify groups of sta-
tions exhibiting similar profiles. The results of the
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cluster analysis identify three groups of monitoring
stations; one mainly containing urban stations, another
including suburban, urban, and some rural stations,
and a third class mainly formed by rural stations. The
results also indicate a geographical pattern among the
urban stations. For both pollutants, intra-diurnal and
daily time scales exhibit the highest variance in par-
ticular for the urban stations, which is justified by
the more relevant chemical activity occurring in areas
with high NO2 emissions (urban areas), responsible
for high variability on daily profiles. Such chemi-
cal processes are also the reason why NO2 and O3

are highly negatively cross-correlated in suburban and
urban sites as compared with the rural ones. This study
also identified some sites which need further revision
with respect to their classification according to the
type of environment and influence. This group of sta-
tions includes the PP suburban station, TEI and LAT
urban industrial stations and the rural stations TER,
FUN and ERV with suburban characteristics.
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www.ieeta.pt) and UID/MAT/04106/2013 (CIDMA/UA, Cen-
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